
week3

October 15, 2017

In [87]: # As always, start with the following

import pandas as pd

Let's load the weather data
Notice how you can load directly from a url
weather_df = pd.read_csv("https://github.com/vega/vega-datasets/raw/gh-pages/data/weather.csv")

1 Indexing/Slicing Dataframes

• Using square brackets
• Using loc
• Using iloc

2 Using Square Brackets

In [88]: # Labels are used to select columns
weather_df["location"].head()

Out[88]: 0 Seattle
1 Seattle
2 Seattle
3 Seattle
4 Seattle
Name: location, dtype: object

In [89]: # List or tuple of labels can also be passed to select multiple columns and their location

weather_df[["wind","location"]].head()

Out[89]: wind location
0 4.7 Seattle
1 4.5 Seattle
2 2.3 Seattle
3 4.7 Seattle
4 6.1 Seattle

1

In [90]: # When using numeric slicing, it is for selecting/slicing rows
Works exactly like python list slicing
weather_df[1:5]

#Can you fetch the last 5 records?

Out[90]: location date precipitation temp_max temp_min wind weather
1 Seattle 2012-01-02 00:00 10.9 10.6 2.8 4.5 rain
2 Seattle 2012-01-03 00:00 0.8 11.7 7.2 2.3 rain
3 Seattle 2012-01-04 00:00 20.3 12.2 5.6 4.7 rain
4 Seattle 2012-01-05 00:00 1.3 8.9 2.8 6.1 rain

3 Using loc

Used for labeled slicing of both rows and columns
NOTE: loc is used with square brackets

In [91]: # Fetch rows based on index number Look at the far left column

weather_df.loc[1]

Out[91]: location Seattle
date 2012-01-02 00:00
precipitation 10.9
temp_max 10.6
temp_min 2.8
wind 4.5
weather rain
Name: 1, dtype: object

In [92]: # You can also use the python list slicing syntax to fetch multiple rows
weather_df.loc[5:10]

Out[92]: location date precipitation temp_max temp_min wind weather
5 Seattle 2012-01-06 00:00 2.5 4.4 2.2 2.2 rain
6 Seattle 2012-01-07 00:00 0.0 7.2 2.8 2.3 rain
7 Seattle 2012-01-08 00:00 0.0 10.0 2.8 2.0 sun
8 Seattle 2012-01-09 00:00 4.3 9.4 5.0 3.4 rain
9 Seattle 2012-01-10 00:00 1.0 6.1 0.6 3.4 rain
10 Seattle 2012-01-11 00:00 0.0 6.1 -1.1 5.1 sun

In [93]: # You can use a list of ids to fetch
weather_df.loc[[1,5,7,10]]

Out[93]: location date precipitation temp_max temp_min wind weather
1 Seattle 2012-01-02 00:00 10.9 10.6 2.8 4.5 rain
5 Seattle 2012-01-06 00:00 2.5 4.4 2.2 2.2 rain
7 Seattle 2012-01-08 00:00 0.0 10.0 2.8 2.0 sun
10 Seattle 2012-01-11 00:00 0.0 6.1 -1.1 5.1 sun

2

In []: # Negative indecies don't work!

weather_df.loc[-1]

Why?

In []: # you can also set the column you want like so
weather_df.loc[1:5, ["location","weather"]]

4 Using iloc

It is exactly like loc, but uses numeric indecies

In []: weather_df.loc[1:5]

In []: # Negative indicies work this time!
weather_df.iloc[-1]

why?

In []: # selecting columns is also numeric
weather_df.iloc[:,0:2].head()

5 Sorting

• Sort rows based on values of column(s)
• Descending or ascending order

In []: # Sort based on temp_max
weather_df.sort_values(by="temp_max").head()

is this ascending or descending order?

In []: # To sort in descending order, set ascending argument to False
weather_df.sort_values(by="temp_max", ascending=False).head()

Seems like New York has the highest and lowest tempratures!

In []: # Sort weather_df by percipitation in ascending order

In []: # Notice how percipitation is 0 for many observations
To sort by percipitation, then by wind speed, both ascending, do the following:
weather_df.sort_values(by=["precipitation", "wind"]).head()

In []: # To sort by percipitation ascending, then by wind speed descending, do the following:
weather_df.sort_values(by=["precipitation", "wind"], ascending=[True, False]).head()

3

6 Filteration

Selecting rows based on logical conditions. e.g., weather observations in New York, or observa-
tions where wind speed is higher than 10

You use conditions very similar to Python conditions in syntax, with some slight variation

In []: # to fetch observations for New York
weather_df[weather_df["location"] == "New York"].head()

In []: # Perform the same filter using dot notation

In []: # Filter observations where wind is higher than 10

In []: # Now try to find out how many observations there are using 2 different methods

In []: # Filter all observations where temp_min is less than or equal to zero and weather is rain
weather_df[(weather_df.temp_min < 0) & (weather_df.weather == "rain")].head()

The parantheses are important!

In []: # You can write it over multiple lines to be easier to read

weather_df[
(weather_df.temp_min < 0) &
(weather_df.weather == "rain")

].head()

In []: # You can also use 'or' in the condition
weather_df[

(weather_df.temp_min < 0) &
(

(weather_df.weather == "rain") |
(weather_df.weather == "snow")

)
].head(10)

7 Some useful functions used in filteration

• isin(values)
• isnull(), notnull()
• duplicated

You can use these in filteration conditions

In []: # Filter using method isin to find observations where whether is either rain or snow

4

8 Data Manipulation

• Operations can be performed on columns
• All values in a column will have the same operation performed on them
• When operating on two or more columns, the operations are performed on items in the same

position

– Columns must match in size

9 Useful methods and Operators

• Almost all the mathematical operators are available
• Useful methods to perform calculations on columns are:

– max, min, mean, median, mode, std, var, count, sum, mod

• Method apply will accept a function that takes a single argument, and returns a value

– The function is applied to every item in the column and a new column is created with
the results

• Useful methods to clean the dataframe are:

– dropna, drop_duplicates, fillna

In []: # Calculating the temprature range

Try to store it in a column called temp_range
be sure to try dot and index notations

In []: # Calculate the mean range and store it in a column called mean_range

In []: # Calculate the mean centered value of range
mean centering = temp_range - mean_range
tells us how much the observation is different from the mean
name the collumn mc_range

In []: # Caclulate the square of mc_range
name the new column mc_range_sq

In []: # calculate the natural log of mc_range and use name mc_range_log
tip: search numpy
be sure to examine the data, what do you see?
What should you do?
Is fillna(0) a good idea?

In []: # based on what you know so far,
try to plot range, mc_range, and mc_range_sq

In []: # try to plot the distributions for the new range columns
hint: search for histograms

5

In []: # try to count the number of observations where the temprature change is above average

can you produce a scalar value instead of a column?

Can you calculate the ratio?

Can you calculate the percentage?

In []: # Calculate the average temprature for the day
hint: use temp_max and temp_min

In []: # plot the average temp

In []: # plot the distribution for average temp

In []: # compare the distribution of average temp with mc_range

In []: # find the days in which the average temprature is below zero and it is snowing
calculate the percentage of these days

6

	Indexing/Slicing Dataframes
	Using Square Brackets
	Using loc
	Using iloc
	Sorting
	Filteration
	Some useful functions used in filteration
	Data Manipulation
	Useful methods and Operators

