
week4

October 21, 2017

1 Exploratory Data Analysis

1.1 The act of making sense of data by converting raw data into actionable informa-
tion

Myatt, Glenn J.; Johnson, Wayne P.. Making Sense of Data I: A Practical Guide to Exploratory Data
Analysis and Data Mining. Wiley.

2 Steps In Exploratory Data Analysis

1. Problem definition and planning
2. Data preperation
3. Data analysis
4. Deployment

3 Problem Definition

• Identify the problem to be solved

– Problem to explore? Question to answer? System to build?

• List project deliverables

– Report vs System

• Identify required resources/skills and success factors

– Including data sources

• Assemble team
• Prepare plan

4 Data Preperation

• Access and combine data
• Summarize data
• Look for errors
• Transform data
• Segment data

1

5 Data Analysis

• Exploring relationships between variables
• Group summaries and comparisons
• Visualization (Our focus)
• Other advanced topics include:

– Discovering non-trivial patterns
– Building regression and classification models
– . . . etc

6 Deployment

• Generate report
• Deploy decision-support tool/system
• Measure business impact

7 Notes On The Steps

• They apply to any other advanced type of analysis
• Because the process involves discovery, it is iterative

– Experience is key
– Multiple perspective and critical thinking is useful
– Patience and Perseverance is required

8 Skills we learned so far focus on

8.1 Data Preperation

• Loading and discovering data
• Plotting and describing variables
• Sorting and filteration
• Preliminary manipulation

8.2 Presenting data (Part of Deployment)

• Using Jupyter Notebook

9 Where are we headed?

Week Step Topic

4 -
Current

Data
Prep.

Joining &
Aggregating data

2

Week Step Topic

5 & 6 Data
Analysis

Visualizing Data -
Groups & Time

Series
7 Review Example case - in

class
7 Midterm

Project
Problem handed

out for individual
analysis, due end

of week 8
8 Data

Analysis
-

Midterm

Advanced topics,
Guest speakers

9 &
10

Data
Prep.

Internet data
collection (APIs
and Scraping)

9 Final
project

Announcement,
team and problem

selection
11 Final

project -
Phase 1

Present proposal -
Problem definition

13 Final
project -
Phase 2

Data preparation
report due

15 Final
project -
Phase 3

Data analysis
report due

Final
Exam

Final
project -
Phase 4

Result presentation

10 Joining Data

• Analysis is typically done a single dataframe
• Sometime the data might be in two different files/dataframes
• joining combines the data into a single dataframe

11 Concatination operation

• Easiest form of joining data
• Dataframes must have identical columns
• Rows from one dataframe are added to another

– End result is a dataframe containing all the rows from combined dataframes

3

12 Join Operation

• Combines columns from two different dataframe into a single dataframe
• This is what we typically mean by joining data
• In pandas, you use

– join() if you are joining on dataframe indecies
– merge() if you are joining on columns

13 Things to consider when joining data

13.1 But first, let’s learn how to connect to fetch data from databases

Dataset can be found at European Soccer Kaggle Dataset
by Hugo Mathien
You can download the sqlite db for this exercise from here

14 But first, working with Sqlite3 DBs

In [1]: # import libraries
import pandas as pd
import sqlite3

connect to database
database.sqlite is the name of the database
db = sqlite3.connect("database.sqlite")

15 Fetching data from the database connection

This involves writing SQL
This page describes how the data looks like.
If you look to the left of the page, you will see the following tables: - Player - Player_Attributes
Let’s load 500 entries from them

In [78]: # prepare the sql statement
sql = "SELECT * FROM Player limit 5000"

execute it on the database
player_df = pd.read_sql(sql, db)

let's view the data
player_df.head()

Out[78]: id player_api_id player_name player_fifa_api_id \
0 1 505942 Aaron Appindangoye 218353
1 2 155782 Aaron Cresswell 189615
2 3 162549 Aaron Doran 186170
3 4 30572 Aaron Galindo 140161

4

https://www.kaggle.com/hugomathien/soccer
https://github.com/qmisr/mis492/raw/master/database.sqlite.zip
https://www.kaggle.com/hugomathien/soccer/data

4 5 23780 Aaron Hughes 17725

birthday height weight
0 1992-02-29 00:00:00 182.88 187
1 1989-12-15 00:00:00 170.18 146
2 1991-05-13 00:00:00 170.18 163
3 1982-05-08 00:00:00 182.88 198
4 1979-11-08 00:00:00 182.88 154

In [79]: # Now it is your turn to fetch 500 entries from Player_Attributes
sql = "SELECT * FROM Player_Attributes limit 5000"
atts_df = pd.read_sql(sql, db)
atts_df.head()

Out[79]: id player_fifa_api_id player_api_id date overall_rating \
0 1 218353 505942 2016-02-18 00:00:00 67
1 2 218353 505942 2015-11-19 00:00:00 67
2 3 218353 505942 2015-09-21 00:00:00 62
3 4 218353 505942 2015-03-20 00:00:00 61
4 5 218353 505942 2007-02-22 00:00:00 61

potential preferred_foot attacking_work_rate defensive_work_rate crossing \
0 71 right medium medium 49
1 71 right medium medium 49
2 66 right medium medium 49
3 65 right medium medium 48
4 65 right medium medium 48

... vision penalties marking standing_tackle sliding_tackle \
0 ... 54 48 65 69 69
1 ... 54 48 65 69 69
2 ... 54 48 65 66 69
3 ... 53 47 62 63 66
4 ... 53 47 62 63 66

gk_diving gk_handling gk_kicking gk_positioning gk_reflexes
0 6 11 10 8 8
1 6 11 10 8 8
2 6 11 10 8 8
3 5 10 9 7 7
4 5 10 9 7 7

[5 rows x 42 columns]

16 Things to consider when joining data

• Is there a key to combine data on? How will rows be matched to one another?

Examine the two data frames and suggest a key to use to combine

5

17 Things to consider when joining data

• What about entries that do not have a match in the other dataframe? do we include them?

– Inner means to include in the result only the records that have matching entries in both
dataframes

– Outer means to include all entries, including ones without matching entries

* The values for columns with non-matching entries will be NaN

In [35]: # Let's try inner join

player_df.merge(atts_df,how="inner",on="player_api_id").head()

Out[35]: id_x player_api_id player_name player_fifa_api_id_x \
0 1 505942 Aaron Appindangoye 218353
1 1 505942 Aaron Appindangoye 218353
2 1 505942 Aaron Appindangoye 218353
3 1 505942 Aaron Appindangoye 218353
4 1 505942 Aaron Appindangoye 218353

birthday height weight id_y player_fifa_api_id_y \
0 1992-02-29 00:00:00 182.88 187 1 218353
1 1992-02-29 00:00:00 182.88 187 2 218353
2 1992-02-29 00:00:00 182.88 187 3 218353
3 1992-02-29 00:00:00 182.88 187 4 218353
4 1992-02-29 00:00:00 182.88 187 5 218353

date ... vision penalties marking \
0 2016-02-18 00:00:00 ... 54 48 65
1 2015-11-19 00:00:00 ... 54 48 65
2 2015-09-21 00:00:00 ... 54 48 65
3 2015-03-20 00:00:00 ... 53 47 62
4 2007-02-22 00:00:00 ... 53 47 62

standing_tackle sliding_tackle gk_diving gk_handling gk_kicking \
0 69 69 6 11 10
1 69 69 6 11 10
2 66 69 6 11 10
3 63 66 5 10 9
4 63 66 5 10 9

gk_positioning gk_reflexes
0 8 8
1 8 8
2 8 8
3 7 7
4 7 7

6

[5 rows x 48 columns]

In [37]: # Outer join will give us an idea of where the data went

player_df.merge(atts_df,how="outer",on="player_api_id").head()

Out[37]: id_x player_api_id player_name player_fifa_api_id_x \
0 1 505942 Aaron Appindangoye 218353
1 1 505942 Aaron Appindangoye 218353
2 1 505942 Aaron Appindangoye 218353
3 1 505942 Aaron Appindangoye 218353
4 1 505942 Aaron Appindangoye 218353

birthday height weight id_y player_fifa_api_id_y \
0 1992-02-29 00:00:00 182.88 187 1 218353
1 1992-02-29 00:00:00 182.88 187 2 218353
2 1992-02-29 00:00:00 182.88 187 3 218353
3 1992-02-29 00:00:00 182.88 187 4 218353
4 1992-02-29 00:00:00 182.88 187 5 218353

date ... vision penalties marking \
0 2016-02-18 00:00:00 ... 54 48 65
1 2015-11-19 00:00:00 ... 54 48 65
2 2015-09-21 00:00:00 ... 54 48 65
3 2015-03-20 00:00:00 ... 53 47 62
4 2007-02-22 00:00:00 ... 53 47 62

standing_tackle sliding_tackle gk_diving gk_handling gk_kicking \
0 69 69 6 11 10
1 69 69 6 11 10
2 66 69 6 11 10
3 63 66 5 10 9
4 63 66 5 10 9

gk_positioning gk_reflexes
0 8 8
1 8 8
2 8 8
3 7 7
4 7 7

[5 rows x 48 columns]

In [38]: # Try to compare both operations by check counts, and null values
can you find differences?
Can you explain why these differences exist?

7

18 Things to consider when joining data

• The level of analysis

– Be careful in your analysis with this!
– Make sure you have the correct variable

• Consider the dataframes for: Player, Team, Match, League, Country

– What are the levels of analysis and their relationship to observations in other
dataframes?

– What happens when we combine them?

19 What is Level of Analysis?

• Consider the Euro Soccer data:

– A league will have many teams
– A team will have many players

• Analysis can be at:

– League level, where you compare leagues
– Team level, where you compare teams
– Player level, where you compare players
– This is what we mean by level of analysis (AKA Unit of Analysis)

20 Team Level Analysis

• Do you include the league attributes?
• Do you include the team attributes?
• Do you include the player attributes?

21 Load Data

Load players.csv and teams.csv into player_df and team_df respectively

In [80]: # Load players and teams data here
player_df =
team_df =

In [104]: player_df.head()

Out[104]: id_x player_api_id player_name player_fifa_api_id_x \
765 48 439366 Abdoulaye Toure 210450
1050 68 37422 Abella Perez Damia 159580
2118 129 160447 Adam Smith 190885
4180 253 32547 Alan Gow 140307
3081 182 168047 Adrian Stoian 192072

8

https://github.com/qmisr/mis492/raw/master/players.csv
https://github.com/qmisr/mis492/raw/master/teams.csv

birthday height weight id_y player_fifa_api_id_y \
765 1994-03-03 00:00:00 187.96 170 766 210450
1050 1982-04-15 00:00:00 187.96 174 1051 159580
2118 1991-04-29 00:00:00 180.34 179 2119 190885
4180 1982-10-09 00:00:00 182.88 154 4181 140307
3081 1991-02-11 00:00:00 177.80 146 3082 192072

date ... penalties marking standing_tackle \
765 2016-05-05 00:00:00 ... 39 57 62
1050 2016-01-28 00:00:00 ... 46 65 70
2118 2015-11-12 00:00:00 ... 48 71 70
4180 2015-02-27 00:00:00 ... 62 25 23
3081 2016-02-04 00:00:00 ... 65 28 30

sliding_tackle gk_diving gk_handling gk_kicking gk_positioning \
765 58 8 15 9 9
1050 69 13 9 12 19
2118 68 8 9 15 9
4180 25 6 9 10 12
3081 32 10 11 7 11

gk_reflexes team_api_id
765 7 8674
1050 12 8674
2118 6 8674
4180 9 8674
3081 6 8674

[5 rows x 49 columns]

In [106]: team_df.head()

Out[106]: id_x team_api_id team_fifa_api_id_x team_long_name \
317 26548 8674 1915 FC Groningen
150 11822 4087 111271 Évian Thonon Gaillard FC
456 43053 9906 240 Atlético Madrid
374 35284 9807 1889 CF Os Belenenses
355 27780 10218 1971 Excelsior

team_short_name id_y team_fifa_api_id_y date \
317 GRO 427 1915 2010-02-22 00:00:00
150 ETG 411 111271 2011-02-22 00:00:00
456 AMA 95 240 2010-02-22 00:00:00
374 BEL 156 1889 2010-02-22 00:00:00
355 EXC 416 1971 2011-02-22 00:00:00

buildUpPlaySpeed buildUpPlaySpeedClass ... \
317 41 Balanced ...

9

150 35 Balanced ...
456 64 Balanced ...
374 30 Slow ...
355 73 Fast ...

chanceCreationShooting chanceCreationShootingClass \
317 69 Lots
150 65 Normal
456 70 Lots
374 60 Normal
355 52 Normal

chanceCreationPositioningClass defencePressure defencePressureClass \
317 Organised 30 Deep
150 Organised 45 Medium
456 Free Form 70 High
374 Organised 30 Deep
355 Organised 25 Deep

defenceAggression defenceAggressionClass defenceTeamWidth \
317 30 Contain 30
150 55 Press 65
456 34 Press 55
374 30 Contain 30
355 47 Press 33

defenceTeamWidthClass defenceDefenderLineClass
317 Narrow Cover
150 Normal Cover
456 Normal Offside Trap
374 Narrow Offside Trap
355 Narrow Cover

[5 rows x 29 columns]

22 Team Level Analysis

• Do you include the league attributes?

– Yes you can

• Do you include the team attributes?

– Yes you can, this is the point of the analysis

• Do you include the player attributes?

– No! unless you aggregate!

10

23 What is aggregation?

• Combining observations from the same level of analysis into a single observation at a higher
level of analysis

24 Match Analysis Example

• buildUpPlaySpeed is a team attribute.
• However, overall_rating is a player attribute.

– You cannot include a single player overall_rating in the analysis of a team, because the
value describe a single player.

– However, if you calculate the average_overall_rating for all players in that team, you
get a value that we can use to describe a team, because a team consists of players.

– Any operatino to combine the overall_rating for all the players in the team will work:

* Count, Sum, Min, Max, Std, Var, Mean, Median . . . etc.

• You can include all match attributes in the analysis of matches
• You must aggregate player attribute to include it in match analysis

In [110]: team_df[["team_api_id","buildUpPlaySpeed"]].head()

Out[110]: team_api_id buildUpPlaySpeed
317 8674 41
150 4087 35
456 9906 64
374 9807 30
355 10218 73

In [112]: player_df[["player_api_id","team_api_id","overall_rating"]].head()

Out[112]: player_api_id team_api_id overall_rating
765 439366 8674 64
1050 37422 8674 71
2118 160447 8674 70
4180 32547 8674 63
3081 168047 8674 70

In [113]: # First we have to merge based on team_api_id

merged_df = player_df.merge(team_df, how="inner", on="team_api_id")
merged_df.columns

Out[113]: Index(['id_x_x', 'player_api_id', 'player_name', 'player_fifa_api_id_x',
'birthday', 'height', 'weight', 'id_y_x', 'player_fifa_api_id_y',
'date_x', 'overall_rating', 'potential', 'preferred_foot',
'attacking_work_rate', 'defensive_work_rate', 'crossing', 'finishing',
'heading_accuracy', 'short_passing', 'volleys', 'dribbling', 'curve',
'free_kick_accuracy', 'long_passing', 'ball_control', 'acceleration',

11

'sprint_speed', 'agility', 'reactions', 'balance', 'shot_power',
'jumping', 'stamina', 'strength', 'long_shots', 'aggression',
'interceptions', 'positioning', 'vision', 'penalties', 'marking',
'standing_tackle', 'sliding_tackle', 'gk_diving', 'gk_handling',
'gk_kicking', 'gk_positioning', 'gk_reflexes', 'team_api_id', 'id_x_y',
'team_fifa_api_id_x', 'team_long_name', 'team_short_name', 'id_y_y',
'team_fifa_api_id_y', 'date_y', 'buildUpPlaySpeed',
'buildUpPlaySpeedClass', 'buildUpPlayDribbling',
'buildUpPlayDribblingClass', 'buildUpPlayPassing',
'buildUpPlayPassingClass', 'buildUpPlayPositioningClass',
'chanceCreationPassing', 'chanceCreationPassingClass',
'chanceCreationCrossing', 'chanceCreationCrossingClass',
'chanceCreationShooting', 'chanceCreationShootingClass',
'chanceCreationPositioningClass', 'defencePressure',
'defencePressureClass', 'defenceAggression', 'defenceAggressionClass',
'defenceTeamWidth', 'defenceTeamWidthClass',
'defenceDefenderLineClass'],

dtype='object')

In [120]: # notice that team entries are duplicated
and that we have an entry for every player
merged_df[["player_name","team_long_name","overall_rating","buildUpPlaySpeed"]].head()

Out[120]: player_name team_long_name overall_rating buildUpPlaySpeed
0 Abdoulaye Toure FC Groningen 64 41
1 Abella Perez Damia FC Groningen 71 41
2 Adam Smith FC Groningen 70 41
3 Alan Gow FC Groningen 63 41
4 Adrian Stoian FC Groningen 70 41

In [122]: # To analyze teams, you must aggregate player observations if you want to include them
otherwise, you have to filter on team attributes and remove duplicates

let's aggregate overall_rating by calculating the average for the players
merged_df[

["player_name","team_api_id","team_long_name","overall_rating","buildUpPlaySpeed"]
].groupby("team_api_id").agg({"overall_rating":"mean"})

Out[122]: overall_rating
team_api_id
4087 62.090909
7788 67.909091
7819 68.000000
8262 67.818182
8322 66.000000
8342 67.090909
8526 69.636364
8535 69.000000
8559 67.545455

12

8674 68.000000
9789 66.727273
9807 69.363636
9810 67.363636
9825 65.454545
9826 70.636364
9880 72.363636
9906 66.272727
9987 69.000000
10218 64.909091
208931 67.454545

In [125]: # simply merge it to team_df to start analyzing teams
but dont forget to reset_index to convert the index into a regular column
ratings_df = merged_df[

["player_name","team_api_id","team_long_name","overall_rating","buildUpPlaySpeed"]
].groupby("team_api_id").agg({"overall_rating":"mean"}).reset_index()

team_df.merge(ratings_df, how="inner", on="team_api_id").head()

Out[125]: id_x team_api_id team_fifa_api_id_x team_long_name \
0 26548 8674 1915 FC Groningen
1 11822 4087 111271 Évian Thonon Gaillard FC
2 43053 9906 240 Atlético Madrid
3 35284 9807 1889 CF Os Belenenses
4 27780 10218 1971 Excelsior

team_short_name id_y team_fifa_api_id_y date \
0 GRO 427 1915 2010-02-22 00:00:00
1 ETG 411 111271 2011-02-22 00:00:00
2 AMA 95 240 2010-02-22 00:00:00
3 BEL 156 1889 2010-02-22 00:00:00
4 EXC 416 1971 2011-02-22 00:00:00

buildUpPlaySpeed buildUpPlaySpeedClass ... \
0 41 Balanced ...
1 35 Balanced ...
2 64 Balanced ...
3 30 Slow ...
4 73 Fast ...

chanceCreationShootingClass chanceCreationPositioningClass \
0 Lots Organised
1 Normal Organised
2 Lots Free Form
3 Normal Organised
4 Normal Organised

13

defencePressure defencePressureClass defenceAggression \
0 30 Deep 30
1 45 Medium 55
2 70 High 34
3 30 Deep 30
4 25 Deep 47

defenceAggressionClass defenceTeamWidth defenceTeamWidthClass \
0 Contain 30 Narrow
1 Press 65 Normal
2 Press 55 Normal
3 Contain 30 Narrow
4 Press 33 Narrow

defenceDefenderLineClass overall_rating
0 Cover 68.000000
1 Cover 62.090909
2 Offside Trap 66.272727
3 Offside Trap 69.363636
4 Cover 64.909091

[5 rows x 30 columns]

25 Player Analysis Example

• overall_rating is a player attribute
• buildUpPlaySpeed is a team attribute

– While this is an attribute that describes a team, this is the team that the player is part of
– The player is affected by the overall performance of the team, and describes the team

that the player is part of, so in a way, it is a player attribute
– You will notice that the value of buildUpPlaySpeed does not change for players in the

same team

• You can include all player attribute to analyze and compare players
• You can also include team attributes without problems, because they can also be considered

player attribute

In [127]: # you can perform your analysis directly on marged_df
because the level of analysis is the player there
merged_df[["player_name","team_api_id","team_long_name","overall_rating","buildUpPlaySpeed"]].head()

Out[127]: player_name team_api_id team_long_name overall_rating \
0 Abdoulaye Toure 8674 FC Groningen 64
1 Abella Perez Damia 8674 FC Groningen 71
2 Adam Smith 8674 FC Groningen 70
3 Alan Gow 8674 FC Groningen 63
4 Adrian Stoian 8674 FC Groningen 70

14

buildUpPlaySpeed
0 41
1 41
2 41
3 41
4 41

26 Aggregating With Transform

If you want to create a column in merged_df that contains the average overall_rating then you use
transform

In [142]: import numpy as np
merged_df.groupby("team_api_id").transform(np.mean).overall_rating.head(15)

Out[142]: 0 68.000000
1 68.000000
2 68.000000
3 68.000000
4 68.000000
5 68.000000
6 68.000000
7 68.000000
8 68.000000
9 68.000000
10 68.000000
11 62.090909
12 62.090909
13 62.090909
14 62.090909
Name: overall_rating, dtype: float64

In [141]: # simply assign this column to merged_df and give it an appropriate name

merged_df["mean_overall_rating"] = merged_df.groupby("team_api_id").transform(np.mean).overall_rating
merged_df.head(15)

Out[141]: id_x_x player_api_id player_name player_fifa_api_id_x \
0 48 439366 Abdoulaye Toure 210450
1 68 37422 Abella Perez Damia 159580
2 129 160447 Adam Smith 190885
3 253 32547 Alan Gow 140307
4 182 168047 Adrian Stoian 192072
5 246 34268 Alain Nef 49939
6 65 302985 Abel Khaled 207541
7 206 213366 Afriyie Acquah 201223
8 73 80592 Aboubakar Oumarou 218548
9 275 37503 Albano Benjamin Bizzarri 14907

15

10 37 173955 Abdoul Razzagui Camara 193953
11 247 182847 Alain Pierre Mendy 209352
12 162 121643 Adrian Chomiuk 186629
13 243 127255 Akwetey Mensah 198781
14 51 419681 Abdul Aziz Tetteh 190193

birthday height weight id_y_x player_fifa_api_id_y \
0 1994-03-03 00:00:00 187.96 170 766 210450
1 1982-04-15 00:00:00 187.96 174 1051 159580
2 1991-04-29 00:00:00 180.34 179 2119 190885
3 1982-10-09 00:00:00 182.88 154 4181 140307
4 1991-02-11 00:00:00 177.80 146 3082 192072
5 1982-02-06 00:00:00 190.50 194 4057 49939
6 1992-11-09 00:00:00 180.34 148 1023 207541
7 1992-01-05 00:00:00 177.80 154 3487 201223
8 1987-04-01 00:00:00 182.88 168 1129 218548
9 1977-11-09 00:00:00 193.04 196 4532 14907
10 1990-02-20 00:00:00 177.80 157 555 193953
11 1989-11-17 00:00:00 182.88 159 4088 209352
12 1988-06-23 00:00:00 182.88 179 2749 186629
13 1983-04-15 00:00:00 172.72 163 4025 198781
14 1989-02-10 00:00:00 182.88 190 803 190193

date_x ... chanceCreationShootingClass \
0 2016-05-05 00:00:00 ... Lots
1 2016-01-28 00:00:00 ... Lots
2 2015-11-12 00:00:00 ... Lots
3 2015-02-27 00:00:00 ... Lots
4 2016-02-04 00:00:00 ... Lots
5 2016-03-10 00:00:00 ... Lots
6 2015-03-13 00:00:00 ... Lots
7 2016-05-12 00:00:00 ... Lots
8 2015-04-01 00:00:00 ... Lots
9 2015-11-26 00:00:00 ... Lots
10 2016-04-21 00:00:00 ... Lots
11 2013-03-15 00:00:00 ... Normal
12 2010-08-30 00:00:00 ... Normal
13 2010-08-30 00:00:00 ... Normal
14 2016-05-05 00:00:00 ... Normal

chanceCreationPositioningClass defencePressure defencePressureClass \
0 Organised 30 Deep
1 Organised 30 Deep
2 Organised 30 Deep
3 Organised 30 Deep
4 Organised 30 Deep
5 Organised 30 Deep
6 Organised 30 Deep

16

7 Organised 30 Deep
8 Organised 30 Deep
9 Organised 30 Deep
10 Organised 30 Deep
11 Organised 45 Medium
12 Organised 45 Medium
13 Organised 45 Medium
14 Organised 45 Medium

defenceAggression defenceAggressionClass defenceTeamWidth \
0 30 Contain 30
1 30 Contain 30
2 30 Contain 30
3 30 Contain 30
4 30 Contain 30
5 30 Contain 30
6 30 Contain 30
7 30 Contain 30
8 30 Contain 30
9 30 Contain 30
10 30 Contain 30
11 55 Press 65
12 55 Press 65
13 55 Press 65
14 55 Press 65

defenceTeamWidthClass defenceDefenderLineClass mean_overall_rating
0 Narrow Cover 68.000000
1 Narrow Cover 68.000000
2 Narrow Cover 68.000000
3 Narrow Cover 68.000000
4 Narrow Cover 68.000000
5 Narrow Cover 68.000000
6 Narrow Cover 68.000000
7 Narrow Cover 68.000000
8 Narrow Cover 68.000000
9 Narrow Cover 68.000000
10 Narrow Cover 68.000000
11 Normal Cover 62.090909
12 Normal Cover 62.090909
13 Normal Cover 62.090909
14 Normal Cover 62.090909

[15 rows x 78 columns]

17

27 Performing Analysis

• We combine data into single dataframe
• With varying levels of analysis, we have varying degrees of variability because of duplica-

tion

– Remember how all players in the same team share the same value of the team attribute
buildUpPlaySpeed

• When we combine data into a single dataframe we have non-normal form data with lots of
duplicated values

– Normal form is a database term, not stats
– Data stored in a data is usually in normal form
– While some values might be duplicated, the records are not

28 Summary

• Level of analysis is important
• You can include variables from higher levels of analysis without issues

– Be aware that you might not have variability

• Including variables from lower levels of analysis requires aggregation

– You aggregate in many different ways: Sums, Counts, Min, Max, Mean, Median, Mode
..etc

– Aggregation is to produce a single scalar value from a group of values

• Represent many observations at a lower level into a single value at a higher level

29 Final Note About Groupby

• You don’t have to have different levels of analysis to use groupby and aggregations
• You can use agg() and transform() with group by to analyze subgroups

– Just group by the variable you want to create subgroups from
– groupby should be given a categorical or discrete variable
– subgroups can be created from a combination of variables

In [38]: # At the team level of analysis
create 4 new columns from player sprint_speed data:
mean_sprint_speed, max_sprint_speed, min_sprint_speed, and std_sprint_speed

In [147]: # at the player unit of analysis
create 4 new columns from player sprint_speed data:
mean_sprint_speed, max_sprint_speed, min_sprint_speed, and std_sprint_speed

18

	Exploratory Data Analysis
	The act of making sense of data by converting raw data into actionable information

	Steps In Exploratory Data Analysis
	Problem Definition
	Data Preperation
	Data Analysis
	Deployment
	Notes On The Steps
	Skills we learned so far focus on
	Data Preperation
	Presenting data (Part of Deployment)

	Where are we headed?
	Joining Data
	Concatination operation
	Join Operation
	Things to consider when joining data
	But first, let's learn how to connect to fetch data from databases

	But first, working with Sqlite3 DBs
	Fetching data from the database connection
	Things to consider when joining data
	Things to consider when joining data
	Things to consider when joining data
	What is Level of Analysis?
	Team Level Analysis
	Load Data
	Team Level Analysis
	What is aggregation?
	Match Analysis Example
	Player Analysis Example
	Aggregating With Transform
	Performing Analysis
	Summary
	Final Note About Groupby

