
week1

January 26, 2018

1 MIS 492 - Data Analysis and Visualization

1.1 Week 1

1.2 Python Primer

1.2.1 Dr. Mohammad AlMarzouq

Note: We will cover as much as we can of this in the first week, use it as a reference.

2 What do computer programs contain?

1. Data
2. Processes

3 What is programming?

Combining data and processes to produce desired output.
All programs produce data as output!
When you learn a programming language, you learn how the language handles data, and how

the language manipulates data (processes), to produce the desired output (data).

3.1 Part 1: Data

4 Where can we find data?

In variables

In [31]: # you can assign/replace

x = 5

In [32]: # you can print (output)

print(x)

5

In [33]: # you can use in operations

x + 2

Out[33]: 7

1

5 Python is a dynamically typed languages

• You can place any type of data in a variables
• You do not have to declare it like VB:

Dim x as Integer

x = "hello" ' will give an error

x = "5" ' will convert "5" into 5

x = 6 ' correct assignment

6 Python is a dynamically typed languages (cont.)

6.1 Notice how you do not declaire a type

x = 5 # integer

x = "6" # string

7 Python is strongly typed

7.1 Mixing different types in operations is not allowed without explicitly letting
python know that it is what you want

In [34]: x = 5

y = "7"

print(x+y) # Error

TypeError Traceback (most recent call last)

<ipython-input-34-3c4368ee9884> in <module>()

1 x = 5

2 y = "7"

----> 3 print(x+y) # Error

TypeError: unsupported operand type(s) for +: 'int' and 'str'

In []: print(x+int(y)) # works, known as type casting

In []: # discover types using type()

type(x)

In []: type(y)

In []: # Works with values and empty values also

type("5") # try type([])

2

8 How to choose variable names?

• Use descriptive names (student_list better than x)
• Always use small letters! (student_list not Student_List)
• Use underscore _ in place of spaces (student_list not studentlist)
• There is more! Learn the conventions and writing style. Read this important article

9 For more information on data types see:

• Python built-in data types
• More advanced data types
• Type: help("TYPES") in jupyter or python prompt

10 Python main data types

• None:

x = None # known as Null, nil, nothing in other languages

11 Python main data types (numeric)

• int (Integers):

x = 10 # integer values (no decimal points)

• float:

x = 11.6 # numeric values with decimal points (known as double in VB)

12 Python main data types (numeric) cont.

• complex:

x = 11 + 1j # complex numbers

13 More complex data types that can store multiple values are known
as data structures

13.1 Includes:

• Sequences: Store multiple items and maintain order.
• Sets: Store multiple unique items, but does NOT maintain order
• Dictionaries: Stores pairs of values, where one is known as a key and used to identify the

other value. (e.g., student id is a key, and the student record can be a stored value).

3

http://docs.python-guide.org/en/latest/writing/style/
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/datatypes.html

14 Mutable and Immutable values

• Some data structures will only store immutable values.
• Meaning that ones the value is stored, you cannot modify it.
• While other data structures allow values to mutate.
• Can you think why?
• discuss with your instructor

14.1 Sequences data types

14.1.1 str (Strings, immutable values):

For more information see here and here

In []: x = "hello" # identified with double quotes"

print(x[2])

14.1.2 list (mutable values):

For more information see here and here

In []: x = [1,2,3,"x",1.1,1,2,3,4]

print(x[1]) # what will this show?

In []: x[1] = 10

print(x)

14.1.3 tuple (immutable values):

For more information, read here and here

In []: x = (1,2,3,"x",1.1,1,2,3,4)

print(x[1]) # what will this show?

In []: x[1] = 10 # what will happen here?

print(x)

15 Trick question

15.1 How to replace second item in tuple x?

In []: x = (1,2,3,"x",1.1,1,2,3,4)

<- What to type here?

16 Sets

In []: x = {1,2,3,"x",1.1,1,2,3,4}

x # In jupyter notebook you do not need to type print to see contents of a variable

Can you spot the difference between a set and a tuple? (there are at least 2)

4

http://greenteapress.com/thinkpython2/html/thinkpython2009.html
http://openbookproject.net/thinkcs/python/english3e/strings.html
http://greenteapress.com/thinkpython2/html/thinkpython2011.html
http://openbookproject.net/thinkcs/python/english3e/lists.html
http://greenteapress.com/thinkpython2/html/thinkpython2013.html
http://openbookproject.net/thinkcs/python/english3e/tuples.html

17 How can you fetch a specific item in a set?

In []: x = {1,2,3,"x",1.1,1,2,3,4}

<- type your answer here

18 What seems to be the problem?

Discuss with your instructor your solutions and whether sets are useful.

19 Dictionaries

• There is no order in a dictionary!
• Dictionary lets the programmer label data
• Data is retrieved using the label
• In lists, data is retreived using the order
• Label is known as Key, data is known as Value

20 More information on dictionaries

Read here and here

In []: # Here is an empty dictionary

x = {}

In []: # how to create an empty set then?

<- answer here

In []: # Here is a non-empty dictionary

x = {

1: "value 1 int",

"1": "value 1 str",

"21112341234": ["student", "data", "here", "Can you retrieve me?"],

}

In []: # try to fetch an item from the dictionary

try to fetch the last item in the student data list ("Can you retrieve me?")

21 Important notes about dictionaries

• Keys must be immutable (values do not change)
• Can we have a list as a key? what about a tuple? how is a tuple useful as a key?
• Values can be mutable
• We will not know the order of values, we fetch them based on labels
• The fetching operation is known as indexing, and you can nest them.

5

http://greenteapress.com/thinkpython2/html/thinkpython2012.html
http://openbookproject.net/thinkcs/python/english3e/dictionaries.html

22 Part 2: Processes

Everything else you write in a program is to tell the computer how to manipulate data. These are
reffered to as processes, functions, operations, methods ...etc. The processes can be categorized
into: - Operators: type help("OPERATORS") and read here - Control structures (which parts can
we execute, and how many times? see here) - Conditionals: read here and here - Loops: read here
and here - Functions

23 Operators

These are all the symboles used manipulate and mix data and variables. Main operator types are:
- Arithmatic: + - * ** / // % == = - Logical: and or not is

24 Operator precedence

• Prcedence is order of execution, it is usually left to write
• Some operators are performed before others, even if on far right
• For example, the assignment operator = is always performed last, why?
• Control precedence with parantheses ()

In []: 5 + 6 * 2

In []: (5 + 6) * 2

25 More on precedence

• See python online documentation on precedence
• type: help("OPERATORS") in jupyter or python prompt

26 Conditionals

More reading: - https://docs.python.org/3/tutorial/controlflow.html
- http://greenteapress.com/thinkpython2/html/thinkpython2006.html -
http://openbookproject.net/thinkcs/python/english3e/conditionals.html

27 Conditionals

Are a way to execute instructions, only if a certain condition is met.
Consists of: - Condition - Code block

In [2]: x = 5

if x > 1: # this is the condition

print("condition 1 is true") # this is the code block

print("This is part of the code block")

6

http://openbookproject.net/thinkcs/python/english3e/variables_expressions_statements.html
https://docs.python.org/3/tutorial/controlflow.html
http://greenteapress.com/thinkpython2/html/thinkpython2006.html
http://openbookproject.net/thinkcs/python/english3e/conditionals.html
http://greenteapress.com/thinkpython2/html/thinkpython2004.html
http://openbookproject.net/thinkcs/python/english3e/functions.html
https://docs.python.org/3/reference/expressions.html#operator-precedence

if x < 5:

print("condition 2 is true")

condition 1 is true

This is part of the code block

28 The Syntax

28.1 required

python if condition: # code block here elif condition: # optional # code

block for elif here else: # optional # code block for else here

29 Nesting

In [5]: x = 5 # change these values to see what happens

y = 10

if x > 2:

if y > 5:

print("y is greater than 5")

else:

print("y is not greater than 5")

print("x is greater than 2")

else:

print("x is NOT greater than 2")

y is greater than 5

x is greater than 2

30 Conditions

• Can be values, variables, expressions, and functions (more on that later)
• Expressions can be logical or arethmatic
• Every language has rules for what is considered True or False as a condition
• e.g.: is 5 or "hello" considered true or false?

31 Truths in Python

The following values are considered False: - None - 0 (int, float, and complex) - "" (empty string,
no space!) - [], (), {} (What are those?)

7

31.1 Everything else is considered True

32 Try statement

• Another type of conditional statements
• Used to execute code when a condition is met, just like if
• Instead of testing the condition, the program looks for the condition in a code block
• Used to detect unexpected errors in code
• e.g.: network connection disconnects while loading data
• more can be learned here

33 Loops

For more information: - http://greenteapress.com/thinkpython2/html/thinkpython2008.html
- http://openbookproject.net/thinkcs/python/english3e/iteration.html - http://bit.ly/pyc_e2 -
https://www.learnpython.org/en/Loops

34 Loops

• Like if statements, loops perform a code block if a certain condition is met.
• However, the code block is repeated while the condition is true.
• Code block execution stops only if the condition turns false.
• Can you explain what an infinite loop is? is it useful or not?

35 Loops in Python

Two types only: - while loop - This one is identical to the if statment, has a condition and a code
block - for loop - This one is available for conveniently working with elements of a data structure
(e.g., list, tuples, dictionaries ..etc). - We will mostly use this one - Referred to as iteration

36 For loop syntax

In [6]: my_list = [1,3,4,5]

for x in my_list:

print(x)

1

3

4

5

In [7]: # can you explain what this program does?

my_list = [1,3,4,5]

for x in my_list:

if x%2 == 0:

8

https://docs.python.org/3/tutorial/errors.html

print(x)

suggest a modification and do it

4

37 Iterating of dictionary elements

In [8]: my_dict = {"123":"Mohammad's record", "222":"Ali's record", "423":"Sara's record"}

for x in my_dict: # not good practice,

print(x) # what will this print?

123

222

423

In [9]: # better way of doing it

my_dict = {"123":"Mohammad's record", "222":"Ali's record", "423":"Sara's record"}

for x in my_dict.keys(): # clearly you want to iterate the keys

print(x)

123

222

423

In [10]: for x in my_dict.values(): # clearly you want to iterate the values

print(x)

Mohammad's record

Ali's record

Sara's record

In [11]: for x in my_dict.items(): # clearly you want to iterate pairs

print(x)

('123', "Mohammad's record")

('222', "Ali's record")

('423', "Sara's record")

In [12]: # you can unpack pairs

for k,v in my_dict.items(): # clearly you want to iterate pairs

print("key is {} and value is {}".format(k,v))

key is 123 and value is Mohammad's record

key is 222 and value is Ali's record

key is 423 and value is Sara's record

9

38 Remember

• You generally use if statements and arethmatic operators when working with single items
• You generally use for loops to work with all items in a list
• inside the body of a loop, you generally work with a single item and tell the computer what

to do with that item
• Use type() to know what each variable holds when your programs don’t run as expected.

39 Functions

40 Useful Python Features

• Sequence slicing and indexing
• Sequences are lists, tuples, and strings!
• String manipulation
• List and dictionary comprehensions
• Built-in and 3rd party libraries

41 Slicing and Indexing

See also here

In [13]: x = [5,4,2,1,-1,10,11]

index first element

x[0]

Out[13]: 5

In []: # index last element

x[-1]

In []: # What about indexing item before last?

In []: # index the 3rd element

In [16]: # get a slice starting from first element to the 3rd (inclusive)

x[0:3]

Out[16]: [5, 4, 2]

In [17]: # get slice from last element to the 2nd (inclusive)

x[2:-1]

Out[17]: [2, 1, -1, 10]

In [15]: # get slice from 3rd element to the end of the list

x[3:]

Out[15]: [1, -1, 10, 11]

10

http://bit.ly/pyc_e3

In [14]: # get slice from 2nd to last element, to first

x[:-2]

Out[14]: [5, 4, 2, 1, -1]

In []: # how to get a copy of a list using slicing?

can you think why slicing copies are important?

replace x with the following string: "hello world"

and perform the previous command to see what happens.

42 String manipulation

There are neumerous features to go over in our short review, we will
learn as needed. Please refer to the following resources for more informa-
tion: - http://greenteapress.com/thinkpython2/html/thinkpython2009.html -
https://www.digitalocean.com/community/tutorials/an-introduction-to-string-functions-
in-python-3 - http://bit.ly/pyc_e4

43 List and dictionary comprehension

If you want to create a list or a dictionary, by looping over the elements of another list or dictionary,
then you use list/dictionary comprehension.

For examples, you have a list of numbers, and you want to create a new list containing only
the even numbers.

In [18]: nums = [5,4,2,1,-1,10,11]

to create new list of even numbers only

even_nums = [x for x in nums if x % 2 == 0]

even_nums

Out[18]: [4, 2, 10]

In [19]: # you can even perform some operations on the even numbers before storing them

for example, you want to convert them into strings

str_even_nums = [str(x) for x in nums if x % 2 == 0]

str_even_nums

you can perform expressions or run functions other than str

Out[19]: ['4', '2', '10']

44 More resources on list/dictionary comprehensions

• http://python-3-patterns-idioms-test.readthedocs.io/en/latest/Comprehensions.html
• https://www.digitalocean.com/community/tutorials/understanding-list-

comprehensions-in-python-3
• http://www.learnpython.org/en/List_Comprehensions

11

45 Python Libraries

• Reuse what others have already written and shared
• Libraries in python can be:
• Built-in (come with python), which is extensive!
• Discover the possibilities here
• 3rd party (Open Source), also extensive
• You can discover them here
• Blog posts and articles might list some very useful ones
• We will use some along the way

46 Is that it?

46.1 Am I a python expert?

• Of course not, what we shared is required knowledge.
• You will build your experience, step by step, as we progress.
• We will explain new things as they appear, do not be afraid to ask.
• Solve a single problem then move to the next. Think about the next step, not the final step.
• It is important to know the terms so you can type your questions in google.
• READ AND KEEP CODING!

47 Recommended resources to read

• The hitchhiker’s guide to python, excellent resource to know how to perform certain tasks
in python

• Awsome python list, list of resources on how to perform certain tasks in python.
• Python for Data Science List, list of resources in python focusing on topics in data science.
• List of interesting jupyter notebooks, see how others have solved data analysis problems

and shared their code.
• Social network analysis list, list of useful resources on social network analysis.

12

https://docs.python.org/3/library/index.html
https://pypi.org
https://wiki.python.org/moin/UsefulModules
http://docs.python-guide.org/en/latest/
https://github.com/vinta/awesome-python
https://github.com/ujjwalkarn/DataSciencePython
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://github.com/briatte/awesome-network-analysis

	MIS 492 - Data Analysis and Visualization
	Week 1
	Python Primer
	Dr. Mohammad AlMarzouq

	What do computer programs contain?
	What is programming?
	Part 1: Data

	Where can we find data?
	Python is a dynamically typed languages
	Python is a dynamically typed languages (cont.)
	Notice how you do not declaire a type

	Python is strongly typed
	Mixing different types in operations is not allowed without explicitly letting python know that it is what you want

	How to choose variable names?
	For more information on data types see:
	Python main data types
	Python main data types (numeric)
	Python main data types (numeric) cont.
	More complex data types that can store multiple values are known as data structures
	Includes:

	Mutable and Immutable values
	Sequences data types
	str (Strings, immutable values):
	list (mutable values):
	tuple (immutable values):

	Trick question
	How to replace second item in tuple x?

	Sets
	How can you fetch a specific item in a set?
	What seems to be the problem?
	Dictionaries
	More information on dictionaries
	Important notes about dictionaries
	Part 2: Processes
	Operators
	Operator precedence
	More on precedence
	Conditionals
	Conditionals
	The Syntax
	required

	Nesting
	Conditions
	Truths in Python
	Everything else is considered True

	Try statement
	Loops
	Loops
	Loops in Python
	For loop syntax
	Iterating of dictionary elements
	Remember
	Functions
	Useful Python Features
	Slicing and Indexing
	String manipulation
	List and dictionary comprehension
	More resources on list/dictionary comprehensions
	Python Libraries
	Is that it?
	Am I a python expert?

	Recommended resources to read

